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ABSTRACT: 

 

Individual tree species classification can be done using Light Detection and Ranging (LIDAR) and aerial multichannel images 

simultaneously. LIDAR is typically used to derive shape features and aerial images are employed to extract colour features from a 

dataset. Different lighting conditions are a common problem when images are utilised: the position of the sun has a significant 

impact on the backscatter radiation of the trees. Methods and results that work on a set of data can be ineffective on another dataset if 

the method is not robust in changing lighting conditions. The current solutions to shading induced problems are spectral rationing 

and the use of a subset of well illuminated tree pixels. We present a method, Illumination Dependent Colour Channels (IDCC), for 

separating the sunlit and shadowed side of a tree sample in this paper. We test if the features derived from this separation can be used 

effectively in individual tree species classification. Pixel values of the digital aerial image are mapped to Canopy Height Model 

(CHM) derived 3D representation of the trees. The sun position together with the mapping aircraft position are then utilised to 

determine the sunlit and shadowed parts on the tree model surface. The classification results are computed on a separate test set and 

compared with a reference method. Improved overall classification accuracy of 11.0 percentage points were achieved with the used 

dataset, when results were compared with the ones acquired from two separate reference methods. 

 

                                                                 

*  Correspondence author. 

1. INTRODUCTION 

The management of today’s forests is becoming increasingly 

complex. New objectives of the forest management are 

introduced including preservation of biodiversity, sequestration 

of carbon, creation of recreational opportunities, and hunting 

considerations. From the industrial point of view, better 

information of the raw wood material quality and quantity are 

requested. In order to meet these requirements, more precise 

information from forest inventory is needed. Thus, airborne 

laser scanning (ALS) is increasingly used for operative, 

standwise inventory in Scandinavia. The two main approaches 

used to derive forest information from ALS data have been 

based on laser canopy height distribution e.g. (Næsset, 1997, 

Næsset, 2002) and individual tree detection e.g. (Hyyppä and 

Inkinen, 1999). In both approaches, the two main development 

areas are: 1) practical solution for tree species classification and 

2) improvement in accuracy and quality of the reference sample 

plots.  

 

Knowledge of tree species is needed in forest industry. Both the 

tree growth and the timber volume estimates are species 

dependent. The species information aids also forest 

management planning. Very fine level information on the forest 

is needed especially in wood procurement planning and in 

forest protection survey (Maltamo et al., 2007). Biological 

studies on forest habitat mapping could also benefit from 

species specific forest information, since for example the 

preferred tree species of some endangered species could be 

located using remote sensing (Goetz et al., 2007). In forest 

industry, the species information determines the usability of the 

wood material. 

 

 

The stand-wise field reference measurements are species 

specific, but they require a massive amount of work. The 

number of assessments per stand is also low, which lowers the 

precision estimation of tree species specific timber sortiment 

(Maltamo et al., 2007).  

 

There are two approaches to achieve species classification from 

aerial images: pixel-based and object based. In pixel based 

classification, either image pixels or integrated data raster cells 

are classified. This approach is closely related to the methods 

used in land cover classification and is mainly used in 

determining the forest type or the main species in large forested 

areas (Franklin et al., 2003). In the object based species 

classification, trees or a group of trees are first detected, 

delineated and extracted from data. Features of a single tree 

object are then computed for classification.  

 

The integration of aerial images and LIDAR has been used in 

several studies (Persson et al., 2004, Heinzel et al., 2008, 

Korpela et al., 2008). Persson et al. (2004) integrated LIDAR 

data and aerial colour-infrared (CIR) imagery to classify tree 

species into three classes: spruce, pine and deciduous. LIDAR 

data was used to segment trees. Segments were mapped to the 

corresponding aerial image. The classification was done using 

10% of the brightest pixels of each tree crown. Each chosen 

pixel was represented by two angle values, which were 

calculated from the green, red, and infrared components of the 

pixel. A sample tree was represented by the mean of the pixel 

angle values within the tree segment. Spectral band ratio 

filtering was suggested for the reduction of shadowing effects. 

An overall classification accuracy of 90% was reported for the 

training set. A spectral rationing algorithm and formation of a 

hybrid colour composite image has been also used to reduce 

shadow effects in other studies, e.g. (Bork and Su, 2007).  
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Heinzel et al. (2008) used LIDAR digital elevation model 

(DEM) data in tree delineation. Histogram linearized CIR true 

orthophotos were transformed into hue (H), saturation (S), and 

intensity (I) channels. The detected tree polygon was fitted to 

the spectral data and shaded areas with very low intensity values 

were removed. The classification was done in two steps: first 

using the hue channel histogram and second using NIR band. 

The overall classification accuracy for tree classes of oak / 

hornbeam, beech, and conifer was 84%. LIDAR data were also 

used to delineate tree crowns, when five tree species were 

classified from aerial images taken with ADS40 and RS30 

digital cameras (Waser et al., 2008). The training set consisted 

of CIR images. An overall classification accuracy of 86% was 

reached.  

 

In Korpela et al. (2008), the integration of LIDAR data and 

aerial images was used to classify seedling trees in a raster cell 

setup with an approximate resolution of 0.5 m. Used reference 

classes were conifers, decidious broad-leaved trees, other low 

vegetation, and abiotic surfaces. The achieved classification 

accuracy varied between the study stands with minimum 61.1% 

and maximum 77.8%. Respective minimum and maximum 

accuracies changed to 61.6 and 78.9 percents, when the used 

tree samples were limited to those in direct sunlight.  

 

Good tree species classification results have been also reported 

using only aerial images (Meyer et al., 1996). Healthy and 

damaged spruce, pine, fir and beech trees were classified 

semiautomatically using CIR images of 0.5 m resolution. The  

achieved average classification accuracy was 80%.  

 

According to the recent studies reviewed above, the most 

typical approach to object based tree species classification is the 

use of LIDAR data for tree crown delineation and for selection 

of the corresponding image pixels. The species classification is 

typically done either by combining only features based on 

image colour channels or by combining them with LIDAR 

based structural features. Shadowing problems are handled 

using filtering and pixel selection.  

 

A comprehensive EuroSDR tree extraction project, where 

different extraction methods were tested on freely available 

datasets, took place in 2008 (Kaartinen and Hyyppä, 2008). 

Twelve different groups participated into it. Only two 

participants classified tree species. The tree species 

classification results were 78% correctly classified trees using 

airborne photographs (57% of the trees were classified) and 

54% correctly classified trees using laser data (64% of the trees 

were classified). The abovementioned results are of interest 

because of the great variation between their classification 

percents and the ones published in articles presenting 

classification methods with over 80% classification accuracy. 

We assume that the good previous results have been obtained 

by having controlled conditions. The EuroSDR test showed that 

the tree classification accuracies published before (e.g. in tree 

finding) did not match with the results obtained in the joint test. 

Thus, methods that work in non-optimal forest conditions are 

still needed. More research should be also focused into method 

comparison.  

 

We assume that there could be features with measurable 

differences between different tree species when the sunlit and 

shaded parts of the tree canopies are first separated and then 

compared with each other. This assumption is based on the fact 

that foliages of different tree species scatter light differently due 

to their general shape and leaf properties, e.g. (Kaasalainen and 

Rautiainen, 2007). We anticipate that the transmittance of the 

tree canopy affects the image brightness on the shadowed side 

of the tree. Separation of lit and shaded parts of a tree canopy 

should also allow better utilisation of the available dataset as 

heavy filtering is not needed for shadow removal. Different 

viewing geometries are also taken into account as long as the 

locations of both the camera and the sun are known. The 

separation of an individual tree canopy into sunlit and shaded 

parts has been done before in Leaf Area Index (LAI), 

Normalized Difference Vegetation Index (NDVI) and canopy 

radiative transfer studies (Chen and Leblanc, 2001, Hall et al., 

2008, Hilker et al., 2008).  

 

We test in this study if we are able to find classification aiding 

features by separating a single tree dataset into sunlit and 

shaded parts. The dataset and the methods used in data 

extraction are introduced in chapter 2. Tested features and the 

used classification methods are presented in chapter 3. The 

classification results are given in chapter 4 and the discussion 

on the results and possible further studies are in chapter 5. 

 

2. DATA AQUISITION 

2.1 Test area 

The test area was located in Espoo city, southern Finland (N 60o 

8.985’, S 24 o
 39.358’). Vegetation in the test area was a mix of 

common city lawn, planted deciduous trees (linden, alder, for 

example), and mixed natural growing stock. The test area had a 

varying contoured topography with heights between 0 – 30 

meters from the sea level. 

 

2.2 ALS data 

The ALS dataset used in this research was acquired on the 12th 

of July in 2005. The used sensor was Optech ALTM 3100 

Optech Incorporated, Vaughan, Ontario). The main flight lines 

were flown 1000 metres over the test area. The average point 

density on these lines was 2-4 points/m2. In overlapping areas 

of flight lines the laser point density rose up to 10-12 points/m2. 

All scanned laser points were used to form rasterized digital 

surface and terrain models (DSM and DTM) of the test area. 

Both DSM and DTM were created with TerraScan (Terrasolid, 

Jyväskylä, Finland). The highest point in a rasterized cell was 

used to determine its elevation in the DSM. In the DTM height 

was determined from the average of a raster cell for points 

classified as ground. Height value of a raster cell was 

interpolated, if there were no laser points in the cell area. The 

raster cell size was set to 30 cm and each cell was georeferenced 

into a national coordinate system (EUREF-FIN). A canopy 

height model (CHM) was calculated from the difference of 

DSM and DTM.  

 

2.3 Digital aerial images 

Digital aerial images were taken on the 1st of September in 

2005. The used sensor was Intergraph’s Digital Mapping 

Camera (DMC) (Intergraph Corporation, Huntsville, Alabama). 

Only the data from four parallel multispectral colour cameras of 

DMC were utilised to form composite images. Each 

multispectral camera had a resolution of 3072 x 2048 pixels 

with the pixel size of 12 µm. Focal length of the cameras was 

25 mm. The multispectral colour cameras were sensitive in the 

following spectral bands: Blue (400-580 nm), Green (500-650 

nm), Red (590-675 nm), and NIR (675-850 nm). One pixel 

footprint size on the ground was approximately 0.25 x 0.25 m2. 
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Figure 1: Left: Visibility inspection of a cell. Right: 

lllumination status inspection. Details of both procedures 

are explained in text. Individual raster cells are not 

shown. Their size was 30 x 30 cm. 

2.4 Tree sample data 

The dataset used for tree species classification consisted of 294 

sample trees. Location and species of each sample tree were 

verified in the field. In some cases a sample consisted of more 

than one tree of the same species. In such a case trees in the 

sample were growing so closely to each other that they had a 

common canopy. Tree samples were chosen from the three most 

common tree species (birch, pine, and spruce) in Finnish 

forests. The total amount of tree samples was 151 birches, 98 

pines, and 45 spruces. Samples were chosen so that they 

represented different ages and sizes of their species. The whole 

dataset of 294 trees was further divided into a teaching set that 

consisted of 230 tree samples in total. The remaining 64 tree 

samples (30 birch, 20 pine, and 14 spruce samples) were used 

as a test set in classification. 

 

3. METHODS 

3.1 Tree crown delineation 

Data for each tree sample were manually extracted and 

registered from ALS data and a digital aerial image. The sample 

extraction was done using an interactive interface built with 

Matlab (Mathworks, Natick, Massachusetts). A dataset of a tree 

sample consisted of several data cells. The position coordinates, 

elevation, canopy height, RGBIR colour values, visibility to the 

sensor, and shading status of each data cell were saved. 

Metadata describing surroundings and the used extraction 

parameters were also saved for each tree sample in addition to 

the data stored in data cells. 

 

Height and position values for data cells located in each 

selected sample canopy were extracted from both the CHM and 

the DSM. A 3x3 median filter was applied to all CHM and 

DSM raster cells within the selected canopy. Height values were 

smoothened to avoid cases, where the laser beam had penetrated 

the canopy giving a raster cell a low height value compared to 

its neighbours. Unit normal vectors pointing towards the sun 

and the camera were also calculated for each data cell after 

height and position extraction. 

 

3.2 Data cell visibility and shading determination 

Different viewing angle geometries were considered after height 

value extraction. Both DSM and CHM were created as if the 

viewer would be all time straight above each data cell. In an 

aerial image each pixel was viewed from a different angle 

depending on the location of the sensor and the pixel’s footprint 

on ground. This meant that a varying number of data cells in 

each selected tree sample were not seen by the sensor. This 

situation is presented in figure 1 (Left). 

 

A following procedure was done to check whether an extracted 

data cell was visible to the sensor or not. A vector pointing 

towards the sensor was drawn from the data cell location. Then 

the height component of the vector was compared with the 

height values of all data cells it crossed on xy-plane. If the 

vector’s height component was smaller than the height value of 

the crossed data cell in the same location, then the original data 

cell was taken as occluded. The occluded data cell was then 

discarded after the visibility determination and it was replaced 

with a new one. The outermost visible cell of the occluding 

ones was taken as the new data cell. Data cell shifting preserved 

the amount of data points. The procedure explained above can 

be written as follows: 

 

                                  (1) 

 

 

 

 

(2) 

 

 

 

where x is the vector pointing towards the camera, x0 is the data 

cell location in ground coordinates, c is the unit vector towards 

the camera, and the n is the preset amount of iteration steps 

taken along c during visibility determination. The n works thus 

as an effective cutoff range. 

 

The length of a step was set to 30 cm for the test dataset. z(i, j), 

c(i , j), z0 and zdsm(i, j) are the corresponding height components 

in the raster cell point (i, j). L is a preset number of occluding 

pixels that are blocking the line of sight between the sun and the 

data cell. It serves as an estimate for transmittance of direct 

sunlight through canopy. It is used because the rasterized 

elevation model cannot make a difference between full and 

partial occlusion. Completely opaque materials would be 

described with L = 0. This means, in terms of L, that even a one 

blocking data cell in (3) would cause complete occlusion of the 

original data cell. Same type of visibility determination is also 

used in true orthophoto generation from several aerial images 

(Bang et al., 2007). 

 

Individual data cell shading was inspected after the data cell 

visibility verification. The data cell shading inspection was 

analogous to that done in visibility verification, but this time the 

vector drawn from the inspected data cell was pointing towards 

the sun. If any of the other data cells along the vector’s line 

were higher than the vector’s height component in any point, 

the data cell was marked as shaded. Otherwise the data cell was 

marked as illuminated. This situation is shown in figure 1 

(Right). The location of the sun was calculated using the flight 

time records and a Matlab routine written by (Roy, 2004). The 

routine uses algorithms presented in (Reda and Andreas, 2003). 

Shadowing inspection was done only for the direct shading. 

Transmittance properties of different species and possible 

diffuse effects were not considered.  
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In this study, trees were approximated as opaque objects in both 

visibility and shadow detection. Thus the value of L = 0 in both 

visibility and shading calculations. 

 

3.3 Colour value shading 

Colour values were linked to each data cell by registering and 

extracting them from an original digital aerial image. All colour 

values for one tree sample were taken from a single aerial 

image. Registration and extraction were done by calculating the 

projected location of each data cell on the original image using 

collinearity equations (Kraus, 1993). These equations are given 

in (3). 

 

 

(3) 

 

 

where (x,y) is the coordinate of a pixel on the aerial image 

corresponding the projected cell, (X,Y,Z )is the cell location on 

the DSM, and (X0,Y0,Z0) is the sensor location. f is the focal 

length of the sensor, and rij are the elements of the (ω,φ,κ) 

rotation matrix. 

 

3.4 Feature set selection 

Illumination dependent colour channels (IDCC): A new 

feature set, Illumination Dependent Colour Channels (IDCC), 

was formed using previously mentioned tree crown delineation, 

data cell visibility, and shading inspection procedures. These 

procedures were utilised to divide a tree sample into an 

illuminated and a shaded part using height information derived 

from the surface and canopy models. Information from this 

division was then used for tree species classification. 

 

The IDCC feature set consisted of different combinations of 

colour channel values and their illumination status, which was 

either illuminated or shaded. An average of each colour channel 

was calculated separately for both the lit and the shaded 

sections of every tree sample. The intensity ratio between the 

shaded and the illuminated part of the canopy was also 

calculated for every colour channel. These separations provided 

a total of 12 features (4 values for illuminated parts, 4 for 

shaded parts, and 4 intensity ratios) to be used in tree species 

classification. Different combinations of these features were 

then tested for the best possible classification result. 

 

A tree sample was removed from its dataset, if it was seen 

completely illuminated (or shaded). The removal was done, 

because it was not possible to calculate ratio between 

illuminated and shaded parts. All trees used in feature set 

comparisons had both shaded and illuminated sides. 

 

Reference feature set: Another classification procedure 

presented by Persson et al. (2004) was used as a reference. In 

this method, tree sample data is filtered so that the brightest 

10% of the pixels are used in classification in this method. A 

normalized unit vector in colour space is formed for every tree 

sample from the averaged intensities of the green, red and near-

IR colour channels. Two angles, azimuth and elevation, are 

calculated between the colour vector components after the 

normalization. These two angles are then used as classification 

features. Classification is done with a quadratic discrimination 

function. We used this method as a reference as its 

implementation was straightforward, but we did not use pan-

sharpened images which were utilised in the reference article. 

The colour channel analysis was done with the original 

multispectral aerial images to preserve extracted colour values 

as well as possible. The suggested feature extraction procedure 

was followed otherwise. 

 

Classification methods: The used classification algorithms 

were quadratic, linear, and Mahalanobis distance based 

discrimination functions. The classification was done using 

Matlab Statistics Toolbox. 

 

4. RESULTS AND DISCUSSION 

4.1 Classification results 

The error matrices for the tree species classification with the 

proposed and the reference feature sets are in table 1. Only the 

best cases are shown for each feature set. The best colour 

channel combination was RGIR in all cases. 

 

The proposed feature set, IDCC, gave the best classification 

result when a combination of illuminated colour channel values 

and the ratios between shadowed and illuminated parts of a tree 

sample was used. Colour information of the shaded data cells 

were not used on their own. The overall classification 

percentage with this feature set was 76.6%. Coniferous and 

deciduous trees were separated from each other with the 

percentage of 82.8%. These results were achieved with the 

quadratic discrimination function. 

 

Species wise classification resulted in an overall recognition of 

65.6% for the reference method. Separation percentage between 

conifers and deciduous trees was 71.9%. Best results were 

achieved using linear discriminant analysis. Both quadratic and 

Mahalanobis distance using discrimination functions gave 

notably lower classification results. 

 

We also tested the validity of the proposed method by 

classifying extracted tree samples using only colour values of 

original aerial images. The DSM and CHM data were used to 

delineate tree crowns, but the height information was not used 

otherwise in classification. The overall classification result was 

relatively high: 65.6%. The separation result for deciduous and 

coniferous trees was 76.6%. These results were obtained with 

linear classification. 

 

4.2 Factors affecting the quality of results 

Aerial image data was taken during an afternoon hour in late 

summer. This means that the sun was already relatively close to 

the horizon, which leads to lower overall illumination. The low 

position of the sun caused also more shadowing, both between 

the trees and their surroundings. The sun position was also 

changing most rapidly at this time of the year. The solar zenith 

angle changed 4.6o during flight in the test area. Aerial images 

were not radiometrically corrected so the sun movement had an 

effect on colour channel values between different images. 
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The flight time was not optimal from the spectral point of view. 

Colour of deciduous leaves gets dark green as the leaves grow 

old during summer as their chlorophyll concentration increases, 

e.g. (Rautiainen et al., 2009). This darkening makes them to 

resemble the needles of coniferous trees in used channels. In 

well illuminated conditions this may not be such a notable 

issue, but a shadowed dark leaf might get mixed with 

illuminated needles within the used scale. 

 

Data synchronization between aerial images and elevation 

models was not exact as there was a month and a half between 

flights. Tree shapes had changed as the canopies had grown.  

Canopy shapes could have been affected by the local weather 

conditions, mainly by the wind. Different wind directions 

during flights cause notable changes in the canopy shape. Both 

aerial images and the laser scanning for elevation models need 

to be taken at the same time for optimal results. 

 

The used classification algorithms may not have performed 

optimally. The size of the sample tree data was relatively small, 

only 294 trees in total, and heterogeneous. Variation within the 

data of all tree species was large with used feature sets and the 

further separation of data into training and teaching datasets 

lowered dataset sizes even more. 

 

The spatial resolution of each data cell was quite coarse. This 

means that the data in each cell represents a general average of 

the area it is covering. The coarse resolution could also explain 

why the results of the reference method were similar with those 

gained from non-filtered, original aerial image data. Heavy 

colour channel filtering seems to suit better for aerial images 

with high resolution, like the pan-sharpened images used in the 

reference article of Persson et al. (2004). 

 

Extracted height values in data cells were mainly interpolated. 

Within the normally covered DSM region (2−4 laser hits/m2) 

approximately 70% of rasterized height values were 

interpolated, when sides of a raster cell were 30 cm long. In 

more densely covered areas (10−12 laser hits/ m2) most of the 

extracted data cells contained a measured value. However, these 

point densities seemed to be sufficient for the height resolution, 

that was needed in shading detection. The classification results 

showed a clear improvement compared to the cases, where 

height data were not used. It would be justifiable to study how 

ALS derived point density scales with the general classification 

accuracy in this type of measurement. 

 

4.3 Further development 

The ALS derived surface models were only utilised to 

determine shadowing of each tree sample in this study. It could 

be possible, however, to derive other canopy describing features 

out of them. Such a new feature could be the general inclination 

of canopy structure.  

 

The calculation of DSM (and DTM/CHM) has an effect on the 

shadowed area determination. The extent of the shadowed area 

depends on the original point density, the process which 

removes the penetrated hits, and the filtering method applied to 

the DSM. In practice, the laser always sees the trees smaller in 

size and height than what they are in reality due to the 

penetration of the laser hits inside the crown. These effects 

should be studied further in the future. 

 

5. CONCLUSIONS 

A data extraction method (IDCC) for tree species classification 

was presented and tested in this study. The proposed method 

gave an improved classification accuracy of 11.0 percentage 

points, when it was compared with another reference method, 

namely Persson et al. (2004), and with non-filtered original 

aerial images. The proposed method was based on using 

features from the illuminated part and the ratio of the 

illuminated and shaded parts of each tree sample in 

classification. A laser derived DSM and colour channel values 

from aerial images were used to separate the illuminated and 

shaded parts of each tree. Applied colour channels from aerial 

images were RGIR. The results are acceptable compared to the 

reference methods. Feature variations were large for all tree 

species within the test dataset. The tree samples of each species 

were of different ages and sizes, and they were located in 

different growing places with varying surroundings. Even 

though earlier studies have shown high classification accuracy 

for boreal forest tree species classification, the practical 

obtainable accuracy has been from 50 to 70% at individual tree 

level. 

 

The proposed method can be easily generalized for other types 

of cameras and hyperspectral sensors. Usage of hyperspectra, 

especially in the NIR region, should yield more species 

dependent spectral features to improve a classification 

procedure. The effects caused by shadow movements during 

different times of day are accounted as the sun location is 

known all the time. Radiometric changes due to the sun 

movement as well as the atmospheric changes need to be noted 

separately and improvements in radiometry of images are 

expected to improve the classification results. 

 IDCC  Reference (Persson, 2004)  Aerial images, no filtering 

 (quadratic)  (linear)  (linear) 

 Birch Pine Spruce  Birch Pine Spruce  Birch Pine Spruce 

Birch 20 1 0  24 8 4  22 3 4 

Pine 9 18 3  6 11 3  8 17 7 

Spruce 1 1 11  0 1 7  0 0 3 

            

Correct 20 18 11  24 11 7  22 17 3 

Total 30 20 14  30 20 14  30 20 14 

Ratio 0.667 0.900 0.786  0.867 0.550 0.500  0.733 0.850 0.214 

Overall 0.766  0.656  0.656 

Coniferous vs Deciduous 0.828  0.719  0.766 

Table 1: Error matrices of the best results obtained with used methods. Classification type with the best results is given in 

parenthesis below the name of the method. 
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